Objest Oriented Programming 101
Frem Zare to Hare Wha am 2

Radu Stoenescy
radu.s.toe@gmail.com

What Am 172 o .

Teaching Assistant
Object Oriented Programming
UFE
oo Gush ireetem

Gemesnuanses Summary

[

History
R il data

art they were
i mania of axparwind Prohlema 7
moapotng i
functins
ORr——— e
T |

P p——

Object Oriented Programming 101
From Zero to FHere

W:Prez

Who am | ?

Radu Stoenescu
radu.s.toe@gmail.com

What Am 1 2

Teaching Assistant
Object Oriented Programming
UPB

Motivation

Here to Stay

Ratings

Jun 2013 | Jun 2012 Delta in Position | Programming Language Jun2013 | Jun 2012 Status
1 1 c 17.809% | +0.08% | A
2 2 Java / 16.656% | +0.39% | A
3 4 L] Objective-C V 10.356% | +1.26% | A
4 3 [] C++ f 8.819% | -054% | A
5 7 11} PHP 5987% | +0.70% | A
6 5 [] c# 5783% | -124% | A
7 6] (Visual) Basic V 4348% | -1.70% | A
8 8 Python ™ 4183% | +033% | A
9 9 Perl 2273% | +005% | A

10 11 L] JavaScript 1654% | +0.18% | A

History

We had data

typedef struct {
char* name;
Int age;
} person_t, *person_p;

W:Prez

aned means of
manipulating it

int make_baby(person_p target) {
target->age = 0;
return;

}

but they were
S@parated

functions data

Proolems ?

if (no problems) {
exit(COMMON_GUYS);

J

W:Prez

Too mueh frecdom

enforcing uSage rules
is difficult

int undo_my_teacher(person_p teacher) {
teacher->age =-1;
return;

GConNseqUENGES

L. Difficult to maintain large
projects
2. TediouS code reuse due to the
need to extensive documentation.

SUMMATY

Procedural programming iS about creating data and
modifying it via functions (or procedures)

Hello 0OP

Manipulations

Data

Hello OOR

ManipulationsS

Data

The trip

what's behind it 7
Terminology

Design principles and best practices
Design patterns - maybe

The trip

what's behind it 7
Terminology

DesSign principles and best practices
Design patterns - maybe

What is it ?

A programming paradigm that represents
computation as a SerieS of mte.ractlons

between ins’canﬁ of m

Yeah ... right .. everything's clear now

1. Every participating entity iS an inStance of a class.
2. A class is a blueprint of an instance (object)
3. A class brings together:
- data (attributes, instance variables, state)
» functions (computation, methods, behavior)
L. An inStance Shares methods but NOT data.
5. An instance get life via a Special method (constructor) that
initializes data.
6. An interaction (meSSage passing between objects) is represented by a
method invocation.

W:Prez

GClass

conStructors
data
methods

Encapsulation

+ hiding implementation (black-boxing)
- every piece of data iS hidden
- setters/getters

O:Prezi

Exposing an AP

- thingsS you expect
others Should use
- good enough code

Terminology alert:
a method caller = client
interface - API

Tight cohesion

- a class should do one
thing and one thing
only

- favors cge reus§*

Loose coupling

@:Prez

code reuse

what is it 2

fava

inheritance
composition and delegation
generics

inheritanca

- a new class that does what its anceStor doeS and

Somethinw

- establishes an “is a" relationship between two classes

composition and
delegation

- a class uses one or more of its members to
implement a certain behavior
- eStablishes a 'has a’ relationship between two
classes

Wihish is better ?

Inheritanca

- behavior proliferation
- statically bound behavior
- only one Superclass
- prone to problems caused by Superclass
interface changes

composition

- verbosity
- performance penalty
- can't benefit from
polymorphiSm

how to decide ?

- does it pass the 'is-a’ test ?
- does it adhere to Liskov's Substitution principle 7
- iS this a casSe where polymorphiSm iS desSired ?

Sorry what ?

Liskov’'s substitution principle

It states that, in a computer program, if Sis a
Subtype of T, then objects of type T may be
replaced with objects of type S (ie. objects of type
S may be Substituted for objects of type T) without
altering any of the desSirable properties of that
program (correctness, task performed, etc.).

via Wikipedia

Can a Subclass
Substitute an inStance
of the Superclass ?

Polimorphism

Ability of a class A to act as an
instance of a Superclass.

Weapon wpn = new BFG();

But why ?

facilitates behavior
variance

DBConnection myConn = new OracleConnection();
VS
OracleConnection myConn = new OracleConnection();

st practices

Graat

- easier code reuse

- a greater level of abstraction
» more Control over usage paths
- many jobs

Great

easier code reuse

a greater level of abstraction
more control over usSage paths
many jobS

Object Oriented Programming 101
From Zero to FHere

Many thanks 1

